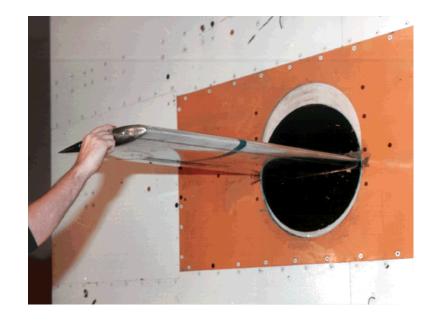


Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Application to Flutter Suppression


Martin R. Waszak

Langley Research Center Dynamics and Control Branch

AIAA Atmospheric Flight Mechanics Conference San Diego, California July 29 - 31, 1996

Outline

- BACT Overview
 - Program
 - Wind-Tunnel Model
- Modeling Requirements
- Modeling Approach
- Model Accuracy
 - Static Equilibrium
 - Flutter Properties
 - Turbulence Response
 - Frequency Response
- Concluding Remarks

BACT Program Overview

Benchmark Aeroelastic Models Program

- study physics of aeroelastic phenomena
 - » classical transonic flutter "bucket"
 - » shock induced instabilities
 - » dynamic vortex-structure interaction
- data to validate steady and unsteady aero codes
- active control of aeroelastic systems

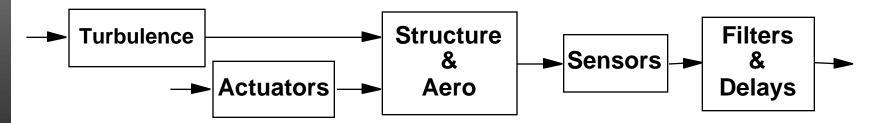
Benchmark Active Control Technology (BACT)

- high quality unsteady aero data near flutter
- active flutter suppression
 - » innovative control concepts spoilers and multivariable
 - » innovative design methods H , μ-synthesis, neural nets
- evaluate on-line controller performance assessment tool

BACT System Overview

- Pitch and Plunge Apparatus (PAPA)
 - 2-DOF: pitch and plunge
 - 5-6 deg max. rotation
 - 1.5 inch max. deflection
- Wind-Tunnel Model
 - rigid NACA 0012 airfoil
 - -AR = 2 (c = 16 in., b = 32 in.)
- Control Surfaces
 - span = 0.3b, centered at 0.6b
 - upper and lower spoilers
 - \Rightarrow chord = 0.15c
 - » 45 deg max. deflection
 - trailing edge flap surface
 - » chord = 0.25c
 - » ±15 deg max. deflection
 - hydraulic actuators

- Instrumentation
 - 4 accelerometers in corners of wing
 - pitch angle sensors
 - 70 pressure transducers
 - » 58 @ 0.6b (incl. control surfaces)
 - » 17 @ 0.4b
 - add'l transducers on splitter plate
 - accels and strain gauges on PAPA



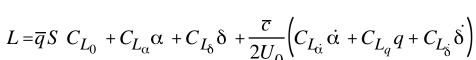
Langley Research Center
Flight Dynamic and Control Division

Modeling for Flutter Suppression

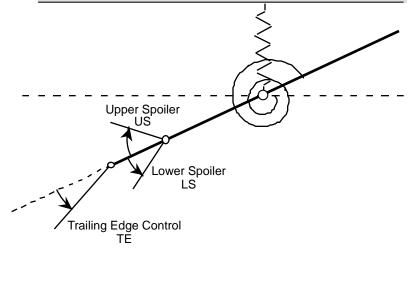
Model elements

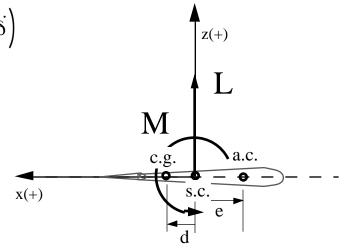
- structural dynamics
- steady and unsteady aerodynamics (including control effects)
- turbulence effects
- actuators, sensors, controller effects

Special features

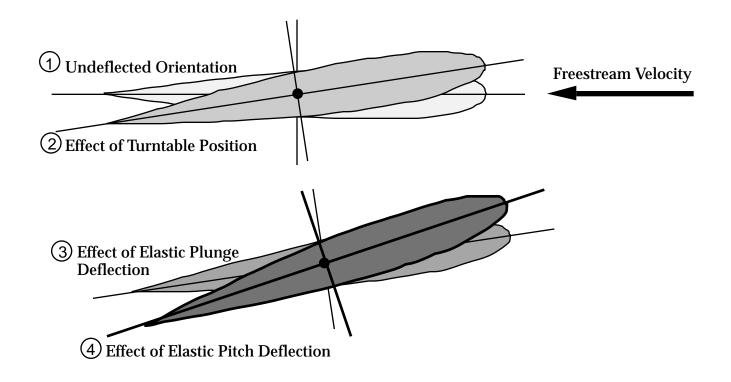

- accurately characterize dynamic response
 - » flutter frequency range
 - » wide range of Mach and dynamic pressure
 - » due to spoilers (not possible with "standard" modeling method)
- characterize effects of key parameter variations
 - » sensitivity analysis
 - » uncertainty models

Modeling Approach


- Idealized structure
 - 2-DOF: pitch and plunge
 - linear
- Aerodynamics
 - linear
 - no lag terms, ω c/2U₀ = 0.044

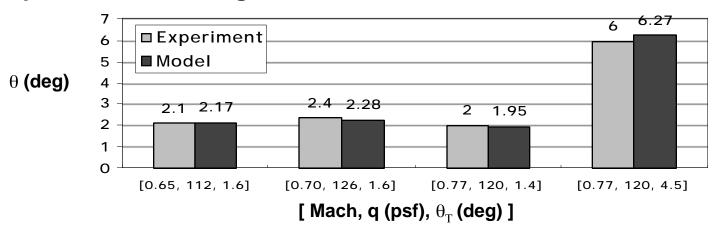

$$\alpha(t) \quad \theta_T + \theta(t) + \frac{\dot{h}(t)}{U_0} + \frac{\ell(x)\dot{\theta}(t)}{U_0} - \frac{w_g(t)}{U_0}$$

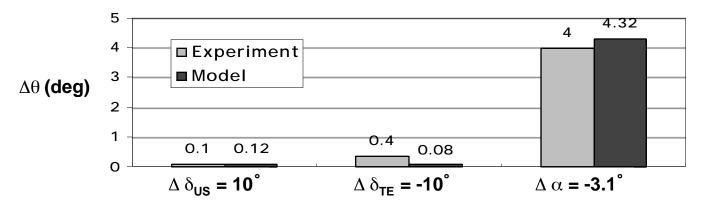
- Lagrange's equations
- Principle of virtual work
- Experimental data in numerical model



Langley Research Center Flight Dynamic and Control Division

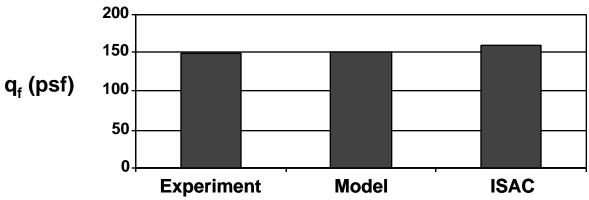
BACT Dynamic Response

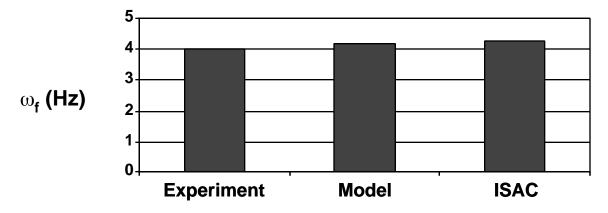

Decomposition of Response



Model Accuracy - Static Equilibrium

Equilibrium Pitch Angle


Pitch Effectiveness



Model Accuracy - Flutter Properties

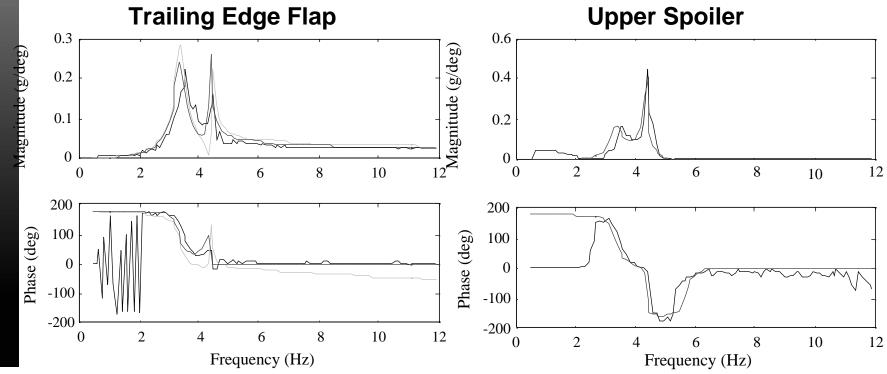
• Flutter Dynamic Pressure (M = 0.77)

Flutter Frequency (M = 0.77)

Model Accuracy - Disturbance Response

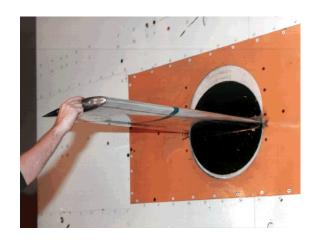
Turbulence Model

- Dryden form
- scaled for TDT turbulence levels in air
- parameterized by airspeed (U = 100, 200, 300, 400 fps)
- RMS Turbulence Response (U = 400 fps)


	RMS Trailing Edge Inboard Acceleration (g's)		
q _{norm} (psf)	Experiment	Model	% Error
0.75*q _f	0.0207	0.0188	-9.2
0.90*q _f	0.0340	0.0350	2.9

Model Accuracy - Frequency Response

- Subcritical Condition: M=0.77, q=125 psf
- Trailing edge inboard acceleration (g's)



Langley Research Center
Flight Dynamic and Control Division

Concluding Remarks

- Simple yet complete model for control system design
 - parametric
 - modular
 - based on most accurate data available
- Accuracy demonstrated
 - static equilibrium
 - flutter properties
 - turbulence response
 - frequency response
- Implemented in Matlab[®]/Simulink[®]
- Used in design of several control laws
 - classical
 - H and μ-synthesis
 - neural nets

